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Approach to Hydro Onset: How?
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it should be amenable to a  
weakly coupled description 

Qs ⇠ 10⇤QCD

initially dominated  
by strong classical field 

A ⇠ 1/g

T
max

⇠ 2⇤
QCD

it is plausibly a strongly 
coupled plasma 

f ⇠ 1
!

dominated by quanta 

?
How thermalization 	


happens? 	

And quickly?? 	




Overpopulated Glasma
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The precursor of a thermal quark-gluon plasma, known as glasma, 	

is born as a gluon matter with HIGH OVERPOPULATION:

f ⇠ 1

↵s

Equilibrium))
Distribu-on)

(with)the)same))
Energy)density)))

�

Ini-al)gluon)distribu-on))
�
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�

Very large 	

occupation number 	


Key observations:	

scale separation; 	


O(1) scattering rate	

—> scaling solutions 	


E ⇠ ⇤

⇤s ⇠ (g2f)⇤

MD ⇠ (gf1/2)⇤



Unexpected “Detour”: BEC
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Two important scales: 	

hard scale Lambda	


soft scale Lambda_s

We started out to derive a kinetic equation and solve it for 	

verifying our expected thermalization via scaling solution…

The numerical evolution kept blowing up 	

despite months’ struggle of finding any potential error …	


At some point we finally realized: 	

THE OVERPOPULATED SYSTEM IS DRIVEN TO 	


A TRUE PHYSICAL SINGULARITY 	

WHERE BEC OCCURS! 



Strong Evidence of BEC from  
Scalar Field Theory Simulations

From: Epelbaum & Gelis  1107.0668

From: Berges & Sexty 1201.0687

Absolutely true for pure 	

elastic scatterings; 	

True, in transient sense, 	

for systems with	

inelastic processes 



Overpopulation: Thermodynamic Consideration
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Our initial gluon system is highly OVERPOPULATED: 

This is to be compared with the thermal BE case:

Overpopulation occurs when: f0 > f c
0 ⇡ 0.154

Identifying f_0 -> 1/alpha_s, even for alpha_s =0.3, 	

the system is highly overpopulated!!

Overpopulation —> BEC



BEC: Quantum Coherence <=> Overpopulation

8

Quantum Coherence implies OVERPOPULATION:
�dB

d
⇠

⇣
n✏�3/4

⌘↵
⇠ Ô(1)

Einstein: new phase emerges with condensate, when 	

quantum wave scale overlaps with inter-particle scale 	

(--- the 1st application of de Broglie wavelength idea)   



BEC in The Very Cold
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It took ~70 years to achieve 	

OVERPOPULATION,  

thus BEC in ultra-cold bose gases. 

n · ✏�3/4 > Ô(1) threshold

Brilliant evaporative cooling: precisely to achieve 
OVERPOPULATION 

Cooling procedure:  kick out fast atoms (truncating UV tail); 	

then let system relax toward new equilibrium; 	


relaxation via IR particle cascade & UV energy cascade.



BEC in the Very Hot!
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Temperature

100K

cold 
atomic 

gas

liquid 	

helium;	


!
cosmic 	

axion?	


101K

magnon

102K10�8K

cavity 
photon;	


!
magnon

~~ 1012K

overpopulated 	

glasma!



BEC for Non-Conserved Particles 
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Another example: 	

idea of overcooled pion gas 	


in heavy ion collisions.

Key point: under suitable conditions, non-conserved particles 
may become effectively or transiently conserved.  



 Can Kinetic Theory Describe BEC?
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Kinetic description is widely used for BEC phenomena	

 (trapped atoms, hard sphere gas, polaritons, cosmic scalars, …)



Kinetic Equations with Small Angle Scatterings

13

f_0=0.1 (underpopulated) f_0=1 (overpopulated)

Blaizot, JL, McLerran, 1305.2119, NPA2013

UV & IR 	

cascade



How Thermalization Proceeds
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Initial 
glasma:

Thermalized weakly-
coupled QGP:

Equilibrium))
Distribu-on)

(with)the)same))
Energy)density)))

�

Ini-al)gluon)distribu-on))
�

Satura&on)Scale))Qs)~)1)GeV))or)larger,)weakly)coupled))
�

particle cascade	

toward IR

energy cascade	

toward UV

separation of two scales 
toward thermalization
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Very strong particle flux 	

toward IR,	


leading to rapid growth 	

and almost instantaneous	

local thermal distribution 	


of very soft modes 

How BEC Onset Occurs Dynamically?
A crucial step:  rapid IR local thermalization

What happens next depends on INITIAL CONDITION:	

underpopulation  v.s.  overpopulation

Blaizot, JL, McLerran, 1305.2119, NPA2013



Underpopulated Case
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f_0 = 0.1 In underpopulated case, the system 
thermalizes to thermal BE distribution. 



Overpopulated Case: 	

How Onset of BEC Develops?
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f_0=1

f(p ! 0) ! T ⇤

p� µ⇤

Before it could reach equilibrium, onset of BEC occurs!	

A critical IR distribution develops, i.e.  Mu* vanishes.	


 (In thermal BEC: global distribution must be critical.)

µ⇤ ! 0



Overpopulated Case: 	

How Onset of BEC Develops?
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f(p ! 0) ! T ⇤

p� µ⇤

f ! T ⇤/|µ⇤| f ! T ⇤/p
p << Mu* p >> Mu*



Overpopulated Case: 	

How Onset of BEC Develops?
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f(p ! 0) ! T ⇤

p� µ⇤

f ! T ⇤/|µ⇤| f ! T ⇤/p
p << Mu* p >> Mu*



Overpopulated Case: 	

How Onset of BEC Develops?
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f(p ! 0) ! T ⇤

p� µ⇤

f ! T ⇤/|µ⇤| f ! T ⇤/p
p << Mu* p >> Mu*



Overpopulated Case: 	

How Onset of BEC Develops?

21

f(p ! 0) ! T ⇤

p� µ⇤

f ! T ⇤/|µ⇤| f ! T ⇤/p
p << Mu* p >> Mu*

µ⇤ ! 0
proceed in a 	

self-similar 	

scaling way



Onset of Dynamical BEC
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For different 	

f_0 = 0.2, 0.3, 0.5, 0.8, 1, 2, 5

Onset of dynamical (out-of-equilibrium) BEC:	

* occurring in a finite time	

* local Mu* vanishes with a scaling behavior	

* persistence of particle flux toward zero momentum

Blaizot, JL, McLerran, 1305.2119, NPA2013



Effects of Finite Masses
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Interesting issues when there is finite external mass:	

* Onset changes, Mu* --> Mass	


* Deep IR dispersion changes,  ~ p^2 (NR) instead of ~ p (UR)  

Very similar onset dynamics as in the massless case!

Interesting issues when there is finite 
screening mass: no more enhancement 	


of small angle scatterings. 	




Including the Inelastic
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An inelastic kernel including 2<-->3 processes 	

(Gunion-Bertsch, under collinear and small angle approxation)

Huang & JL, arXiv:1303.7214

A number of features:	

* fixed point: BE distribution with zero chemical potential	

* always positive at very small momentum	

* purely inelastic case --- correctly thermalize to BE	
!
The question changes now: 	

no condensate in thermal states, 	

but dynamical BEC while still far from being thermal.



Effects from the Inelastic
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Local effect: enhance IR growth, 
accelerate the onset 

Global effect: reduce number density, 
enhance entropy growth

R: ratio of the inelastic to the elastic kernel Huang & JL, arXiv:1303.7214



The “Fuller” Picture
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What we find: the inelastic process catalyzes 	

the onset of dynamical (out-of-equilibrium) BEC.	


It might sound contradicting with common wisdom ... 	

but it is NOT.

Elastic only
increasing 	

Inelastic



Evolution beyond Onset
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* To evolve the system beyond onset, one needs a set of kinetic 
equations describing the co-evolution of condensate + gluons. 	

* It is difficult (at the moment) to do that for the gauge field system. 	

* We instead study the SCALAR SYSTEM to explore the interesting 
interplay between condensate and particles toward thermalization.  

Kinetic equations for scalar system: 

Two types of fixed points from under-/over-populated initial conditions:

this matters!



Evolution before Onset of BEC

28

Rapid growth of infrared occupation 	

in a self-similar scaling fashion
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Self-Similar Scaling Analysis 
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Scaling from stationary cascade	

(c.f. Semikoz-Tkachev)

0.05 0.10 0.15 0.20 0.25 0.30 0.35
-0.25

-0.20

-0.15

-0.10

-0.05

0.00

t

m*
-
M

µ⇤ = M � (⌧c � ⌧)�/(2��2)

⌧c ' 0.35
� ' 1.25 ! �/(2� � 2) = 2.5

We have found consistent 
scaling exponents in this case. 	


!
Note: S-T uses classical limit of 

kinetic equations, while we 
maintain full quantum factors.



Evolution after Onset of BEC
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Two remarks: 	

* f(p) gradually switches from	

f~1/p^2 toward f~1/p 	

* McLerran parameterization 
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Final Approach toward Thermalization
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Pertinent time scale:
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Anisotropic Initial Condition
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Interesting questions:  
* How anisotropy affects evolution, particularly BEC onset? 
* How the system evolves toward isotropy? 
[Note: static box for now, but anisotropic I.C.]



Evolution from Anisotropic I.C.
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* IR part essentially maintains isotropy all the time	

* Same IR self-similar scaling behavior before onset 	

* Same IR classical thermal after onset 	

* UV tails keep adjusting toward isotropy

just before onset time very close to thermal point



Isotropization from Anisotropic I.C.
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underpopulated case

⌧
iso

⇠ 64⇡3

�2f2
0



Isotropization: Classical v.s. Quantum
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We now study the overpopulated case: in particular the 
comparison between the classical limit and the full quantum. 

pressure isotropization
f(e=1) for pure Pz direction  

v.s. pure Pt direction 

The system appears to have difficulty with isotropization in the 
classical limit — WHY?  
* Isotropization mostly concerns ~UV scale where occupation f ~ O(1) 
or even less  
* The classical approximation underestimates isotropizing scatterings:

fLfL(1 + fT )(1 + fT )� fT fT (1 + fL)(1 + fL) = (2fT fL + fL + fT )(fL � fT )



Summary
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* Initial gluon system at very early stage of a heavy 	

ion collision is characterized by high overpopulation. 	
!
* Elastic process (alone) in highly overpopulated system 	

can induce very rapid growth of soft modes and drive 	

toward equilibration.  This is a very robust feature 	

and may lead to a transient Bose-Einstein Condensate. 	

* Dynamical onset of BEC in a scaling way is found to be a very 
robust feature despite many details.	
!
* Inelastic processes may further enhance the rapid 	

growth of soft modes and catalyze the onset of BEC 	

(but will remove the condensate afterwards). The time window for a 
condensate could be sizable.  	
!
* We hope to be able to include longitudinal expansion, and to 
quantitatively compare kinetic results with other approach soon. 




